Skip to content
OpenRouterOpenRouter
© 2026 OpenRouter, Inc

Product

  • Chat
  • Rankings
  • Models
  • Providers
  • Pricing
  • Enterprise

Company

  • About
  • Announcements
  • CareersHiring
  • Partners
  • Privacy
  • Terms of Service
  • Support
  • State of AI

Developer

  • Documentation
  • API Reference
  • SDK
  • Status

Connect

  • Discord
  • GitHub
  • LinkedIn
  • X
  • YouTube
Favicon for baai

baai

Browse models from baai

3 models

Tokens processed on OpenRouter

  • BAAI: bge-base-en-v1.5bge-base-en-v1.5
    600 tokens

    The bge-base-en-v1.5 embedding model converts English sentences and paragraphs into 768-dimensional dense vectors, delivering efficient, high-quality semantic embeddings optimized for retrieval, semantic search, and document-matching workflows. This version (v1.5) features improved similarity-score distribution and stronger retrieval performance out of the box.

    by baai512 context$0.005/M input tokens$0/M output tokens
  • BAAI: bge-large-en-v1.5bge-large-en-v1.5
    681K tokens

    The bge-large-en-v1.5 embedding model maps English sentences, paragraphs, and documents into a 1024-dimensional dense vector space, delivering high-fidelity semantic embeddings optimized for semantic search, document retrieval, and downstream NLP tasks in English.

    by baai512 context$0.01/M input tokens$0/M output tokens
  • BAAI: bge-m3bge-m3
    14.2M tokens

    The bge-m3 embedding model encodes sentences, paragraphs, and long documents into a 1024-dimensional dense vector space, delivering high-quality semantic embeddings optimized for multilingual retrieval, semantic search, and large-context applications.

    by baai8K context$0.01/M input tokens$0/M output tokens